289 record minimums so far, and 13 record maximums.
Disrupting the Borg is expensive and time consuming!
Google Search
-
Recent Posts
- UK Green Energy Record
- UN Is Upset
- “Fascist Salute”
- Record Warmth Of January 1906
- Heat Trapping Difficulties
- Visitech – Data Made Simple – Antarctic Sea Ice
- Visitech – Data Made Simple
- California Governor Refused Firefighting Help
- Internet For Drowned Island
- A Toast To President Trump
- 97% Of Government Experts Agree
- Green Energy Progress
- Scientists Concerned
- New Data Tampering By NOAA
- Magical Thermometers
- Responsive Government In California
- Collapse Of The Antarctic Sea Ice Scam
- NPR : Cold And Snow Caused By Global Warming
- Snow Forecast In All 53 States
- 97% Consensus
- “Melting ice reveals millennia-old forest buried in the Rocky mountains”
- America Burning
- Mediterranean Britain
- Californians Celebrate Annual Wildfire Tradition
- June 17, 1917 In California
Recent Comments
- Francis Barnett on UK Green Energy Record
- Greg in NZ on Record Warmth Of January 1906
- Disillusioned on “Fascist Salute”
- Francis Barnett on “Fascist Salute”
- Yonason on “Fascist Salute”
- Yonason on “Fascist Salute”
- Yonason on “Fascist Salute”
- Yonason on “Fascist Salute”
- Bob G on “Fascist Salute”
- arn on “Fascist Salute”
Wow! Gaia is pissed.
Excuse my ignoramus but has it always been above 1 to 1 since 1930?
No. Most recent years have been below 1.
Probably a red horizontal line at 1 would make sense, since this is a ratio. Also, I’d be tempted to say that a logscale is more appropriate because if you reverse the ratio (i.e. take 1/x and plot that) then it will give quite a different impression.
Lastly, I’m surprised that previous years are quite as stable, I would expect such events to come in clusters. There’s something odd about the change. One of this things I noted elsewhere is that the electronic temperature stations (or AWS if you like — Automatic Weather Stations) have a higher input bandwidth than the old heavy mercury thermometers. That is to say, they react faster to fluctuations in local temperature, the maximum temperature recorded generally only exists for a fleeting moment of time. With the old mercury thermometers, the measurement was slower and effectively averaged out a longer period of time.
In a nutshell, they don’t measure the same thing at all.
With the BOM in Australia, I checked the continuous readings when they had some record-breaker hot days, for example here:
http://www.bom.gov.au/products/IDN60901/IDN60901.94768.shtml
You see there’s a reading every 30 minutes. These are somewhat averaged, but the day maximum could well be significantly higher than ANY of the 30 minute samples (because the maximum only exists momentarily).
For example: the official BOM daily maximum for Observatory Hill (Sydney) on Tuesday 14 January 2014 was 27.5 but looking down the list of samples every 30 minutes the maximum is only 26.8 at 2:30 PM (which is really 1:30 PM when you throw away the DST adjustment, so just after midday as expected).
You can see this effect on any AWS, and I’m pretty sure the max/min was never fully calibrated against the old mercury thermometers, so yet another discontinuity in the historical data. *SIGH*
Hey, that’s a fine Hockey Stick!
Is this data for Jan 1 through Jan 13 each year, or are 2013 and earlier full years?